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A series of experiments was conducted to examine the
relationship of signal 1identification to signal detection at
successive stages of observation of relatively long signals. The
fundamental theoretical idea is that, with sequential observation
of each signal and/or noise pattern presented, detection and
identification proceed simultaneously as parts of the same
process. Moreover, the accuracy of detection performance and the
accuracy of identification performance will grow together in a
predictable way (Nolte, 1967). Specifically, at each stage of
observation a Relative (or Receiver) Operating Characteristic
(ROC) of a form that relates the probability of both a correct
detection and a correct identification to the probability of a
false detection can be predicted from the simple detection ROC,
as a function of the number of possible signals. The main
assumptions of the wunderlying model are that the signals are
orthogonal and of equal energy (Starr, Metz, Lusted, and
Goodenough, 1975). The wuse of the ROC provides a way of
examining the results of simultaneous detection and
identification tasks that is independent of the observer's

criterion for a detection response (Lindner, 1968).

alle
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The signals used in the experiments reported here met the
criteria of independence and equal energy. They were highly
idealized visual representations of underwater sounds, suggested
by the spectrographic display used in some sonar applications. A
companion study, reported separately, used more complex and
correlated signals, in order to simulate more closely real
(including wunderwater) sounds of practical interest. 1In the
latter study, an attempt was made to relate identification and
detection performances by means of a multidimensional scaling
analysis, and by means of developing correspondences of
psychological and physical dimensions (Swets, Green, Getty, and

Swets, 1977).

PROCEDURE

Description of the Signals and the Noise. The signals and

noise were generated on a DEC PDP-11/34 minicomputer driving a
COMTAL 8000-SA image-processing and display system. The COMTAL
generates an 1image consisting of 512 x 512 picture elements
(pixels), in which each pixel can take on any of 256 gray levels
between black and white. The raster-scanned image is displayed

in an area 24 cm by 24 cm on a CONRAC 17-inch (43 cm) SNA

television monitor.




Report No. 3535 Bolt Beranek and Newman Inc.

The noise background consisted of a 256 x 256 element
matrix, each noise element being a 2 x 2 square of pixels. Each
element was assigned a gray value drawn randomly from a Gaussian
distribution with a mean of 128 units on the COMTAL gray scale
and a standard deviation of 25  units. The contrast and
brightness controls on the CONRAC monitor had been adjusted such
that the middle gray (128 units) corresponded to a luminance of
about 62 cd/m2 and full white (255 wunits) corresponded to a

luminance of about 308 cd/m2.

The noise background was sampled anew on each trial.
Signals, when present, were superimposed on the noise background
by constructing a matrix of signal values and then displaying the

sum of the signal and noise matrices.

In Experiment I, eight signals consisted of single, vertical
lines eight pixels in width, which differed in horizontal
location across the display. The signal 1lines darkened the
underlying noise background by five gray units (1/5 of the noise
standard deviation), and were centered horizontally in successive
eighths of the display. The seneral 1location of each of the
potential signal 1lines was indicated to the observers by a

horizontal strip above the image 1labelled with the digits 1

through 8 above successive signal-line 1locations. As an
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illustration, a slightly enhanced display of signal #3 (a line in

position 3) is shown in Fig. 1.

In Experiment II, the display was divided horizontally into
16 locations. A set of five orthogonal signals was constructed
by choosing five sets of three lines from the set of 16, without
replacement. The pattern for each of the five signals is given
in Table I, and an enhanced display of one of them (Signal #3) is
shown in Fig. 2. Each 1line was eight pixels 1in width and
darkened the underlying noise by three gray units (less than 1/8

of the noise standard deviation).

Location
Signal # Line #1 Line #2 Line #3
1 5 9 112
2 2 7 10
3 4 6 15
4 3 8 16
5 1 11 14

Table I. Signal Line Patterns (Experiment II)

Viewing Environment. Observers sat approximately two meters

from the stimulus-display screen. This screen was about one

meter from the floor, and viewed comfortably over the

-4-
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CRT/keyboard computer terminals (Lear Siegler ADM-3A) wused for

4 response cueing and response entry. Ambient room lighting was

approximately three cd/cm2.

g P R P U TT Wy S o

Stimulus Presentation. Signals were presented in noise at

random on one-half of the trials, and noise alone was presented
on the remaining trials. When a signal was presented, it was
equally 1likely to be any one of the signals wused 1in the

experiment.

Each trial contained five stages of observation, with each
stage followed by the responses described below. A stage
consisted of painting a horizontal stripe over approximately the
top one-fifth of the screen. Stages followed from top to bottom
of the screen in "waterfall" fashion, each stage '"pushing down"

the preceding stages.

Responses. The first response made at each stage was a
detection response in the form of a six-category rating of
confidence. Following this response were first and second
choices relative to identification, and were made no matter which
detection response was made previously. Responses were made via
the keyboard of the CRT terminal, with appropriate type and time

of response cued by the terminal's display; the complete terminal

display is shown in Fig. 3.




Eidige 3.

An example of the complete terminal display at the
end of a trial in both experiments.
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Trial and Session Timing. A firth of the screen was painted

in ten seconds. The next fifth was painted after all observers
had completed their responses. The observer-terminated response
interval lasted approximately five seconds, followed by a warning
sound that the next stage would occur. Feedback was given at the

conclusion of a trial, and 1.5 seconds intervened between trials.

Ten trials were presented in a block, and, as a rule, six
blocks were presented in a two-hour session. Thirty sessions

were conducted over eight weeks. Certain sessions or initial

parts of sessions were designated as practice, and not included

in the analyses.

Experimental Control. Stimulus presentation and trial

timing were controlled by the PDP-11/34 computer, which also

recorded responses and analyzed the data.

Observers. Three observers included two high school students

and one of the experimenters (JBS).

Experimental Conditions. In Experiment I, with eight

signals consisting of single 1lines differing in location, two
conditions examined the effect of (a) leaving visible, and (b)
erasing, each of the five stages of stimulus presentation as

these stages proceeded on a trial. A pilot study, employing JBS
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and another technical assistant as observers, was essentially
identical to Experiment I. In Experiment T1I, with five signals
consisting of variously distributed three-line patterns, only

condition (a) was conducted.

RESULTS

Pilot Experiment

Detection ROC's. Detection ROC's for each of five stages =--

(a) with, and (b) without, "visible memory" -- are shown for the
two observers on double-probability scales in Fig. 4. The two
conditions were based on (a) 142 trials and (b) 120 trials. The
form of the several ROC's -- approximating a straight line with a
slope perhaps 1less than but near unity -- appears reasonable,

given the relatively small number of trials.

Detection Accuracy Over Time. The increase in the detection

index dé (the normal-deviate index taken at the negative diagonal
as described by Green and Swets, 1966, 1974) over the five stages
is shown on double-logarithmic scales in Fig. 5. As a reference
for the visible-memory condition (a), the best fitting
(least-squares) line with a slope of one has been drawn through
the data points, representing a growth of dé proportional to the

number of preceding stages, n. As a reference for condition (b),

S
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Flg. 4. Pilot Experiment. Detection ROC's for each of the

five §tages of observation for two observers:
(a) with, and (b) without, visible memory.
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0:JBS

02 —

0:JK

02~ [eWITH VISIBLE MEMORY
OWITHOUT VISIBLE MEMORY,

o1 Il L o TR A R 1%

2 3 48 10
OBSERVATION STAGE, n

Fig. 5. Pilot Experiment. The detection index, d', over
the five observation stages for two obsersers, both
with and without visible memory. Best fitting
(least-squares) lines with slopes of one and one-
half are shown as references for the visible and
no-visible memory conditions, respectively.
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the pest fitting line witn a slope of one-half has been drawn
through tne data points, representing growth in dé proportional
to the square root of n. The former prediction 1is consistent
with some otner results of areal summation in vision, and the
latter prediction is consistent with data of several previous
experiments 1in which 1integration depended on the observer's

memory (Green and Swets, 1966, 1974, Chapter 9).

Detection and Identification Accuracy Over Time. Figure 6

shows detection accuracy -- here indexed by area under the ROC --
over time, along with identification accuracy -- nere indexed by
the percentage of correct responses -- over time. The indication
here is that the two processes proceed simultaneously, spanning

together the range trom near chance to near perfect performance.

Predicting Identification from Detection. Joint detection-

and-identifiication ROC's having as ordinate value the probapility
of responses correct with regard both to detection and
identification, are snown in Fig. 7. The figure shows the values
predicted from the data points of the simple detection ROC, and
the values obtained, at each stage of observation. There is good

agreement between the two sets of values.

-12-




Report

Ftg. 6.

PERCENTAGE

PERCENTAGE

e e——

No. 3535 Bolt Beranek and Newman I[nc.
(a) WITH VISIBLE MEMORY (b) WITHOUT VISIBLE MEMORY
100 T T T T 100 T St T
80} - 80 O”_—£,___4>———"”'f,
o]
60 r — f—t 60 =
z
S
40 4 & 4o} . <
T |
W ,
20} 0: JBS = 20} 0: yBS <
0 1 | ] ] o ] \ ] ]
100 100
80~ 80}
o
60 f_{ GOT
z
w
a0 & 4ol
= 0: JK
20+ 0:JK = 20k-|° DETECTION AREA —
o |DENTIFICATION P(C)
Il | | | | | ol -
CO 1 2 3 4 5 OO 1 2 3 4 S

OBSERVATION STAGE,n

Pilot Experiment. The area under the ROC curve
(detection) and the percentage of correct responses
(identification) over observation stages for two
observers: (a) with, and (b) without, visible memory.
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Fig. 7. Pilot Experiment. Joint detection-and-identification

ROC curves for two observers for each of the five
observation stages: (a) with, and (b) without,
visible memory. 0dd and even observation stages are
presented in separate panels for the sake of clarity.
The connected circles show values predicted by the
model . 14
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kxperiment 1

Detection_ ROC's. Detection ROC's for each of five stages,

under the two memory conditions, are shown for the three
observers 1in Fig. 8. The two conditions were based on (a) 126
trials and (b) 141 trials. The more experienced observer yielded
tidy data. The new observers yielded fairly regular ROC's for
tne condition with visible memory; without visible memory the

effective signal strength for them wes quite low.

Detection Accuracy Over Time. Figure 9 shows a growth of dé
with visible memory having a slope somewhat less than unity. The
data pased on no visible memory have a slope only slightly 1less
than those obtained with visible memory, and noticeably greater
than one-half. Swets and Birdsall (1977) point out that signal
uncertainty may produce an effect seen here in both sets of data
but more clearly in the data based on no visible memory: a slope
greater than one-half for early observations, during a phase of
zeroing in on the location of the signal, and a slope near
one-half on later observations, when locational uncertainty is

lessened.

Detection and Identification Accuracy Over Time. Detection

area and identification percent-correct are shown for the two

-15-
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and (b) without, visible memory.
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stages of observation for three observers: (a) with,
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Experiment I. The detection index, d', over the five
observation stages for three observerg, both with- and
without-visible memory. Best-fitting (least-squares)
Tines with slopes of one and one-half are shown as
references for the with- and without-visible memory
conditions, respectively.
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memory conditions in Fig. 10. They proceed apace from near
chance (50% and 12-1/2%, respectively) to near perfect peformance

(100%) .

Accuracy of _Second _Choices. The percentages of correct

second choices relative to identification, when the first choice
was incorrect, were 59% and 58%, 32% and 30%, and 43% and 35%,
for the two memory conditions and the three observers,
respectively. These are all clearly greater than the chance
percentage of approximately 14%, and indicate that a substantial

amount of information is conveyed by the second choice.

Predicting ldentification__from Detection. The model that

predicts the correct detection-plus-identification ROC from the
detection ROC is strongly supported by the data shown in Fig. 11
(three observers, two memory conditions). In relatively few
cases 1is there room for a line to connect predicted and obtained
points. The average absolute discrepancies in percentage units
for the three observers and ¢two memory conditions (listing
condition a, visible memory, first) are 2.9 and 4.4, 4.0 and 5.3,
and 3.1 ana 3.8, vrespectively. Taking account of sign of
deviation, the errors ot prediction are -2.5 and +1.4, -0.1 and
+3.3, -0.3 and -1.5, wnhere negative numbers indicate obtained

values less than those predicted.
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Experiment II

Experiment II was conducted to determine if the data 1look
much the same, and if the model predicting identification from
detection is as successful, when the signals are somewhat more
complex. In this experiment, the signal was one or another of
the five patterns of lines described earlier: a pattern
consisted of a particular three of sixteen possible lines. Just
one "memory" cordition was conducted, with each stimulus stage
left visible throughout a trial. A larger number of trials was

presented in this condition (320).

Detection ROC's. The detection ROC's in Fig. 12 1look

familiar: reasonably straight 1lines with slopes tending to
decrease as detectability increases (see Green and Swets, 1966,

1974) .

Detection Accuracy Over Time. The index dé is seen in Fig.

13 to increase approximately in proportion to the number of

preceding observation stages.

Detection and Identification Accuracy Over Time.

Performances on the two tasks become more accurate over time 1in

related fashion; see Fig. 14.
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Fig. 12. Experiment II. Detection ROC's for each of the five
stages of observation, for three observers.

<22




Report No. 3535 Bolt Beranek and Newman Inc.

30 =P

20 -

(¢ T

o1 0: JBS

02 S e S S

30 T = )

0: L6

02 1 (S5 S S R S

30 o | B o e

02 1 I | TR ) 1 %

30 ot EmT s T g [

20 §

06 -

/ AVERAGE
[e WITH VISIBLE MEMORY |
1

| T T -

03

02

] 4 5 10

OBSERZVATISN STAGE, n

Fig. 13. Experiment II. The detection index, dg, over the
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least-squares-fit line with slope of unity is shown
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«24-




B T P R T W o gy v P eIy u

Report No. 3535 Bolt Beranek and Newman Inc.

Accuracy of Second  Choices. Again, second-choice

identification responses are correct with greater-than-chance
accuracy: 50%, 41%, and 49% for the three observers, relative to

the chance level of 25%.

Predicting Identification from Detection. The prediction of

detection-plus-identification from detection alone 1is less
accurate here than in the previous experiment; see Fig. 15. The
average absolute discrepancies in percentage units between
predicted and obtained points are 5.1, 15.9, and 5.9, for the
three observers. These discrepancies are about 2 and 3 points
greater than in Experiment I for the first (JBS) and third (LS)
observers, respectively, and about 12 points greater for the
second observer (LG). The average signed deviations are almost
identical to the absolute deviations, with obtained values
consistently greater than predicted. Why the obtained values are
greater than the predicted values, which are supposed to be
optimal relative to detection performance, remains to be
determined. One possibility is that the forced identification
response can be based on the detection of a single line, whereas
the detection response might conservatively be based on the
likelihoods of ¢two or three 1lines. What 1is relatively a
depressed detection performance would yield a depressed

prediction of ideal identification performance. This possibility
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connected circles show values predicted by the model.
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was suggested by the subjective report of one of the observers

(JBS).

Nolte (1967), writing on the design of the "adaptive optimum
receiver,"
probability estimates separately for each signal under

consideration, so that detection and identification proceed

together

either kind. According to this conception, detection does not
precede 1identification, nor vice versa. There is no partial
"aha" effect in either direction: the observer does not say "Now
that I know a signal is present, I can begin to determine which
one," nor
begin to build up detectability." The data presented above,
showing detection accuracy and identification accuracy to grow

together over time, are consistent with this conception.

Broadbent (1971) has provided the analogy of an array of
test tubes, each corresponding to a signal alternative, and each
partly full of water. The selection of one tube corresponds to
perception

depends on how full it is. The initial level of water in each

3535 Bolt Beranek and Newman Inc.

DISCUSSTION

suggested that this receiver stores updated

in a unitary process that is the basis for responses of

"Now that I know which signal I am observing, I can

of a signal, and the probability of selecting a tube
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tube represents the bias toward recognizing the corresponding :
signal, and the presentation of a signal causes the level of the
water in its tube to rise, to an extent depending on the strength

of the signal and the sensitivity of the receiver.

We <can 1imagine the receiver to utilize eight tubes when
confronted with eight signals which are 1lines of different
locations, as in our Experiment I. In Experiment II, to extend
this conception, the observer might supplement the (five)
"signal" tubes with an array of (fifteen) "dimension" tubes, with
water 1levels representing the energy in different locations (or

frequency bands). He might then pour the dimension tubes (with

replacement) according to the predetermined patterns into the
signal tubes. The fact that information is conveyed by second
choices, as seen 1in the foregoing, is another datum supporting
the general conception reflected 1in Nolte's and Broadbent's
models: the observer collects and updates data on several signal
possibilities, and has access to more than the largest

probability estimates, or to more than the fullest test tube.

Nolte's and Broadbent's models apply to the sequential
decision task in its complex and realistic form, that 1is, in
which the observer decides when to declare whether or not a

signal exists. The observer determines, in effect, how full any
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tube must be to be selected, or how empty they must all be to

indicate that no signal 1is present -- perhaps easing both

s

criteria as time passes. Our present experiments bypassed such a
speed-accuracy tradeoff, by using trials of fixed length, so that
we could focus better on the process of accumulating sensory
information. As far as human detection is concerned, treatments
of the sequential, or deferred-decision, task have appeared

elsewhere (e.g., Swets and Birdsall, 1967).

Nolte's and Broadbent's models also permit the various

signals to have different prior probabilities and different

utilities, and our present experiments avoided these

complications too. We would point out, however, that the
decision-theory models permit treating another realistic task --
one in which responses are solicited from the observer at various
times during observation, times that are determined by
considerations possibly outside of the viewing environment. The
varying prior probabilities and utilities may be supplied to the

observer at the time that the response is solicited.

Starr, Metz, Lusted and Goodenough (1975) developed the
quantitative model that we have applied in our attempt to relate
identification and detection at successive stages of observation.

They proposed and supported the model for visual localization, or

<39«




Report No. 3535 Bolt Beranek and WNewman Inc.

tne identification of a visual signal's location, and we are
interested in exploring possible extensions of the model to forms
of 1dentification or gelassification not purely, or not S0
obviously, locational. The importance of the development by
Starr and colleagues, as we see it, 1is that it 1is the first
apparently successful means of extending the ROC concept in
detection theory to treat tasks involving multiple signal
alternatives. Barly attempts to do so (e.g., by Swets and

birdsall, 1956) achieved rather limited success.

Tne detection-plus-identification model is seen to fit our
data on simple 1location very well, tnat is, in Experiment I in
which the task was to locate a line signal in one of eight ©bins
or columns. Ihe model also fits reasonably well tne data of
rxperiment I1 -- in which the signal was one of five combinations
of three lines selected (without replacement) from sixteen bins.

The task of ©pwxperiment II can also be considered one of

localization, of course, but the use tnere of (simulateaqa) i
spectrographic patterns 'S suggestive of more general
identification tasks -- including, tor example, visible speecn.

Inaeed, the audible correlates ot our spectrographic signals

should yield data fitted by the model. we have applied the model

to Lindner's (1968) data on tne detection and identification of
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two tones, and found quite close agreement of predicted and
obtained data. The prediction was uniformly low, but deviated on
the average (of four observers and four criteria) by only 3.0
percentage units. The discrepancies for the four observers

individually were 2.1, 4.6, 3.8, and 1.3.

One 1impact of these results 1S that time-consuming
identification tests need not be conducted 1in perceptual
situations to which the model applies -- the results are
predictable from simple detection results. For this practical
reason, as well as in the interest of theory, the limits of the
model should be determined. We submit that the limits will have
to be empirically determined. Though the main assumptions of the
model -- orthogonal and equal-energy signals -- are clear and
restrictive, we have other evidence that a model based on those
assumptions c¢an be rather robust. Specifically, Green and
Birdsall (1964) have shown that the so-called
one-of-M-orthogonal-signals model (see Nolte and Jaarsma, 1967)
accounts for the effect of vocabulary size in tests of speech

perception.
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